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A novel simple autonomous optoelectronic chaotic circuit is presented in this work. Interestingly, the circuit is based on a 
single optoelectronic element, a light-emitting diode. The mathematical model of the circuit is described by three first-order 
ordinary differential equations which contain six terms with two parameters and an exponential nonlinearity. The proposed 
circuit is easy to be implemented by using common cheap components. The circuit can exhibit complex dynamical behavior 
like chaos despite of its simplicity. Therefore, it is a potential candidate for chaos-based engineering applications or is 
intended for educational purposes.  
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1. Introduction 
 

Chaotic circuits have received considerable interest in 

the literature because they have been applied in numerous 

areas such as secure communications, robotics, image 

processing or random bit generator [1-20]. One of the most 

important research directions is constructing robust chaotic 

oscillators with simple structures [21-23]. There are two 

kinds of simple chaotic oscillators: non-autonomous and 

autonomous oscillators [22]. Some typical discovered 

examples of simple non-autonomous chaotic oscillators 

are Linsay’s anharmonic oscillator with a resistor, an 

inductor, and a varactor diode [24]; Dean’s circuit with a 

capacitor, a linear resistor, and a resistor including ohmic 

losses in the inductor winding [25]; Lakshmanan’s 

sinusoidally driven second-order circuit with three linear 

elements and a Chua’s diode [26]; or Lindberg’s chaotic 

oscillator with a transistor, two capacitors, and two 

resistors [27]. In the realm of simple autonomous chaotic 

oscillators, noticeable examples are Hartley’s oscillator 

based on a junction field effect transistor and a tapped coil 

[28]; two-element memristive time-delay system [29]; 

three-element circuit with a nonlinear active memristor 

[30]; four-element Chua’s circuit [31];  simple current 

tunable chaotic oscillators using floating or virtually-

grounded diodes [32]; RLCC-Diode-Opamp chaotic 

oscillator with six electronic components [33]; or Piper’s 

circuits using only op-amps and linear time-invariant 

passive components [22]. 

It is noting that optoelectronic chaotic circuits are the 

potential candidates for generating chaos [34-43]. On one 

hand, optoelectronic chaotic circuits have been applied in 

the field of optical communications with significant 

advantages such as larger communication channels and 

high bit rates [34,39]. On the other hand, optoelectronic 

chaotic circuits are quite simple due to the fact that 

optoelectronic elements provide internal nonlinear 

characteristics [37]. Hanias et al. introduced a simple non-

autonomous chaotic circuit including an AC-voltage 

source, a resistor, an inductor and a light-emitting diode 

(LED) [38]. Authors simulated the circuit by Multisim to 

show chaos. A non-autonomous optocoupling circuit was 

presented in [37]. Authors used a 4N25 optocoupler in a 

typical common emitter configuration along with an 

emitter degeneration resistor and a collector resistor. An 

input sinusoidal voltage was applied through an inductor 

which was connected in series to the driver LED. 

Optoelectronic Duffing-Holmes circuit was also 

considered in [37]. Rocha and Medrano proposed an 

antiparallel blue LED configuration of a Chua’s diode [44]. 

Motivated by published works, the aim of our work is 

to propose a simple chaotic system with a light-emitting 

diode (LED). The rest of our paper is organized as follows. 

In the next section, description of the new circuit and its 

dimensionless model are introduced. Dynamics properties 

of the model are investigated in section 3. Experimental 

results are reported in section 4. Finally, conclusion 

remarks are presented in section 5. 

 

 

2. Description of the circuit 
 

In this work, we consider a simple autonomous circuit 

as shown in Fig. 1. The circuit consists of six resistors, 

three capacitors, four operational amplifiers (U1 – U4) and 

a light-emitting diode (D). Three operational amplifiers 

(U1 – U3) are configured as integrators. The light-emitting 

diode is considered as a simple nonlinear device with an 
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exponential function. The diode current is described by the 

following Shockley diode equation [45-48]: 
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where IS is a reverse bias saturation current, n is a diode 

ideality factor, VT is a thermal voltage and VD is a voltage 

over the diode. Conventional diodes are made from a 

variety of semiconductor materials and their ideality 

factors are not constant [49-50].  

 

 
 

Fig. 1. Schematic of the circuit in which the  

light-emitting diode is denoted as D 
 

 

By applying the Kirchhoff’s laws into the circuit, we 

obtain its mathematical model given by three differential 

equations 
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in which 
1
,Cv

2
,Cv

3Cv  are the voltages across three 

capacitors C1, C2 and C3, respectively. It is noting that 

these capacitors have same values C1 = C2 = C3 = C in this 

work. System (2) is normalized by using dimensionless 

variables and parameters given by: 
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As a result, system (2) is rewritten as 
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where x, y, z are state variables while a, b are two positive 

parameters. As seen in (4), the system contains six terms 

with two parameters and one exponential nonlinearity. 

Although the value of the parameter a depends on the 

light-emitting diode, but we can get a desired value of a 

conveniently by changing the resistor Ra. For instant, the 

value of a is fixed as 1.9231×10
-4

 by choosing Ra = 10 kΩ 

for IS = 1 nA, VT = 26 mV and n = 2.  It is worth noting 

that dynamic behavior of system (4) can be changed by 

varying the parameter b, which does not affect the diode 

equation. 

System (4) is dissipative because of the general 

condition of dissipativity 
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The equilibrium point of system (4) is found by solving 
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Thus, system (4) has a single equilibrium point E(0,0,0). 

The Jacobian matrix of system (4) at the equilibrium point 

E is derived by 

0 1 0
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Therefore, the characteristic equation of system (4) at the 

equilibrium point E can be found as  

 
3 2 1 0.b a           (8) 

 

The eigenvalues can be obtained from (8) to determine 

system stability. Obviously, the stability of the equilibrium 

point of system (4) depends on system parameters. The 

system (6) is stable at the equilibrium E if the parameters 

satisfy a > 0, b > 0 and ab > 1. 

 

 

3. Dynamics properties of the system 
 

When selecting a = 1.9231×10
-4

, b = 1, and the initial 

conditions         0 , 0 , 0 0,0.1,0 ,x y z  the calculated 
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Lyapunov exponents of system (4) are L1 = 0.0983, L2 = 0, 

and L3 = –1.0994. By applying the Routh-Hurwitz 

criterion to the characteristic equation (8), we see that 

system (4) is unstable at the equilibrium E because ab < 1. 
In this case, system (4) is chaotic because it has one 

positive Lyapunov exponent. Chaotic behavior of system 

(4) is displayed in Fig. 2.  

  

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Chaotic attractor of system (4) for a = 

1.9231×10-4, and b = 1 in (a)  x–y plane,  (b)  x–z  plane,   

                                  and (c) y–z plane 

As have been known, the Kaplan-Yorke fractional 

dimension [51], which presents the complexity of 

attractor, is defined by 
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  The Kaplan-Yorke dimension of system (4) for 

a = 1.9231×10
-4

 and b = 1 is KYD 2.0894 2,   which 

indicates a strange attractor. 

For a clear view of the nonlinear dynamics of system 

(4), its bifurcation diagram is reported in Fig. 3 by plotting 

the local maxima of the state variable x when changing the 

value of the bifurcation parameter b. In addition, the 

maximal Lyapunov exponents (MLEs) of system (4) have 

been calculated using the algorithm in [52] and are 

presented in Fig. 4.  

 

 
 

Fig. 3. Bifurcation diagram of system (4) when varying b. 

 

 
Fig. 4. Maximal Lyapunov exponents of system (4) 

 when varying b. 
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The bifurcation diagram is a valuable tool which gives 

the change of system’s dynamic behavior [21]. Maximal 

Lyapunov exponent determines a notion of predictability 

of system (4). A positive MLE is an indication that the 

system is chaotic [21]. Moreover, the system displays a 

periodic state when MLE is equal to zero.  

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 5. The periodic orbit of system (4) when b = 1.6 in             

(a) x–y plane, (b) x–z plane, and (c) y–z plane 

As seen in Figs. 3, 4 there are some windows of limit 

cycles, and chaotic behavior. In more detail, in the range 

1.135 < b < 1.215, the system exhibits not only periodic 

behavior but also chaotic behavior. For the value of the 

parameter b < 1.135, a more complex behavior is merged. 

In contrast, for the value of b > 1.215, system (4) remains 

always in periodic state. For example, Fig. 5 illustrates the 

periodic orbit of system (4) for the parameter b = 1.6. In 

addition, as reported in Fig. 4, it easy to see that the 

oscillator presents a reverse period-doubling route to 

chaos. 

Moreover, dynamical behavior of system (4) has been 

studied by varying the parameter a. The bifurcation 

diagram and the maximal Lyapunov exponents are 

displayed when changing the value of the bifurcation 

parameter a as reported in Fig. 6 and Fig. 7, respectively. 

As shown in Fig. 6 and Fig. 7, the system can exhibit 

periodical and chaotic behaviors with different values of 

the parameter a. 

 

 
 

Fig. 6. Bifurcation diagram of system (4) when  

changing the parameter a 

 

 
 

Fig. 7. Maximal Lyapunov exponents of system  

(4) when changing the parameter a 
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In order to illustrate the coexistence of attractors in 

system (4), we have been plotted two bifurcation diagrams 

of system (4) with two different initiation conditions in 

Fig. 8. Interestingly, the coexisting attractors can be 

observed in the range of the parameter b from 1.12 to 

1.195. 

 

 
 

Fig. 8. Bifurcation diagrams of system (4) when varying 

b for different initial conditions: x(0),y(0),z(0))=(0,0.1,0) 

(black) and (x(0),y(0),z(0))=(0.1,0,0.1) (red) 

 

 
4. Experimental results 
 

The proposed system has been implemented in 

breadboard by using off-the-shelf discrete electronic 

components, as shown in Fig. 9.  

 
 

 
 

 

Fig. 9. Implemented circuit in breadboard in which                   

the red light-emitting diode can be used to display the 

chaotic flicker of the light 

 

 

The circuit is easy to be built with commercially 

cheap components such as resistors, capacitors, 

operational amplifiers and a red light-emitting diode. In a 

simple experimental prototype, the values of electronic 

components in Fig. 9 have been selected as follows:          

R = Ra = Rb = 10 kΩ, and C1 = C2 = C3 = C = 10 nF. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 10. Experimental attractors of the electronic circuit 

displayed by oscilloscope in (a) x–y plane, (b) x–z plane, 

and (c) y–z plane 

 

 

The single light-emitting diode provides not only the 

nonlinearity but also a visual tool for observing chaos 

directly. In addition, an advantage of the circuit is the 

absence of inductors, thus it allows integrating such circuit 
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in view of on-chip implementation. Experimental 

attractors are measured from the oscilloscope and shown 

in Fig. 10. There is an agreement between numerical 

simulations (Fig. 2) and experimental results (Fig. 10). 

Different kinds of LEDs, for example the green LED 

and the yellow LED, have been tested to confirm the 

robust of our circuit. There are slightly differences in the 

values of parameter b, in which the circuit’s dynamical 

behavior changed. This is due to the slightly different 

characteristics of each LED, such as the threshold voltage. 

However, the circuit exhibits chaos in all cases. 

The main advantage of the proposed circuit is its 

system simplicity. It has only six terms and only one 

nonlinear (the exp(y) function). Also, the system is 

implemented with a LED, that makes it different from 

reported works. As have been known, the inductors always 

exist in simple chaotic circuits [24,25,33]. However, the 

inductor is a less desirable circuit element because of its 

inevitable parasitic resistance and its relatively large space 

compared to the size of the entire circuit. Our circuit 

includes only resistors, capacitors, operational amplifiers 

and a LED. Thus, the circuit is suitable for the 

manufacture of integrated circuits. In addition, there is no 

presence of multipliers in our proposed circuit; therefore 

we avoid the nonidealities of analog multipliers [53]. 

Moreover, the state variable x appears only once in the 

third equation of (4), therefore, the state variable x can be 

controlled conveniently by introducing a control parameter 

k in the third equation of (4). As a result, chaotic signal x 

can be moved from a bipolar signal to a unipolar signal 

easily, which is useful in practical applications.  

 

 

5. Conclusions 
 

In this work, a simple chaotic circuit has been 

introduced and investigated through numerical simulations 

and experimental implementation. Interestingly, the 

presence of a single light-emitting diode provides not only 

the nonlinearity term in the circuit but also a direct 

approach for observing chaotic behavior. The proposed 

optoelectronic circuit is able to show complex behavior, 

like chaos in spite of its simple structure. From a practical 

standpoint, the circuit is constructed by common 

components and is a robust standalone chaotic circuit [22].  

Therefore, the circuit is suitable for chaos-based 

engineering applications.  However further studies must be 

done when using it for secure communications. For 

example, we have to consider the synchronization of 

systems, the maximum operation frequency or actual 

communication protocols. It is noted that we should be 

aware of the limitations of commercially available 

amplifiers [54,55]. 

In addition, simple chaotic circuits with hidden 

attractors [56-60] should be studied in future works. 
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